Efek FotoListrik,Hamburan Comton,dan Konsep Foton

Efek FotoListrik,Hamburan Comton,dan Konsep Foton


BAB I
PENDAHULUAN
1.1. Latar Belakang
Dalam fisika modern efek fotolistrik, hamburan Compton dan konsep foton merupakan salah satu pokok bahasan yang mempunyai kedudukan istimewa karena interpretasi mekanisme terjadinya peristiwa ini telah mengantarkan fisika pada tahapan baru yang melahirkan fisika kuantum. Karenanya pemahaman yang optimal mengenai ketiga materi tersebut pada pembelajaran fisika modern amat diperlukan sehingga kegiatan laboratorium yang tidak dapat terlaksana perlu digantikan dengan kegiatan serupa. 
Salah satu alternatif yang dapat ditempuh adalah dengan merancang kegiatan eksperimen virtual yang memanfaatkan program aplikasi komputer untuk menampilkan hasil perhitungan yang disertai dengan animasi dan simulasi.
1.2. Rumusan Masalah
Masalah yang akan dibahas dalam makalah ini antara lain :
1.      Apa itu efek fotolistrik?
2.      Apa itu hamburan compton?
3.      Bagaimana konsep foton?
1.3. Tujuan
Berdasarkan rumusan masalah di atas, pembahasan materi dari makalah ini bertujuan untuk :
1.      Mengetahui efek fotolistrik
2.      Mengetahui hamburan Compton
3.      Mengetahui konsep foton
BAB II
PEMBAHASAN
2.1. Efek Fotolistrik
Hasil-hasil eksperimen menunjukkan, bahwa suatu jenis logam tertentu bila disinari (dikenai radiasi) dengan frekuensi yang lebih besar dari harga tertentu akan melepaskan elektron, walaupun intensitas radiasinya sangat kecil. Sebaliknya, berapapun besar intensitas radiasi yang dikenakan pada suatu jenis logam, jika frekuensinya lebih kecil dari harga tertentu maka tidak akan dapat melepaskan elektron dari logam tersebut. Peristiwa pelepasan elektron dari logam oleh radiasi tersebut disebut efek fotolistrik, diamati pertama kali oleh Heinrich Hertz (1887). Elektron yang terlepas dari logam disebut foto-elektron

.

Susunan Alat Eksperimen Efek Fotolistrik
 
Efek fotolistrik membutuhkan foton dengan energi dari beberapa electronvolts sampai lebih dari 1 MeV unsur yang nomor atomnya tinggi. Studi efek fotolistrik menyebabkan langkah-langkah penting dalam memahami sifat kuantum cahaya, elektron dan mempengaruhi pembentukan konsep Dualitas gelombang-partikel. fenomena di mana cahaya mempengaruhi gerakan muatan listrik termasuk efek fotokonduktif (juga dikenal sebagai fotokonduktivitas atau photoresistivity ), efek fotovoltaik , dan efek fotoelektrokimia .
a. Mekanisme Emisi
Foton dari sinar memiliki energi karakteristik yang ditentukan oleh frekuensi cahaya. Dalam proses photoemission, jika elektron dalam beberapa bahan menyerap energi dari satu foton dan dengan demikian memiliki lebih banyak energi daripada fungsi kerja (energi ikat elektron) dari materi, itu dikeluarkan. Jika energi foton terlalu rendah, elektron tidak bisa keluar dari materi. Peningkatan intensitas sinar meningkatkan jumlah foton dalam berkas cahaya, dan dengan demikian meningkatkan jumlah elektron, tetapi tidak meningkatkan energi setiap elektron yang dimemiliki. Energi dari elektron yang dipancarkan tidak tergantung pada intensitas cahaya yang masuk, tetapi hanya pada energi atau frekuensi foton individual. Ini adalah interaksi antara foton dan elektron terluar.
Elektron dapat menyerap energi dari foton ketika disinari, tetapi mereka biasanya mengikuti prinsip "semua atau tidak" . Semua energi dari satu foton harus diserap dan digunakan untuk membebaskan satu elektron dari atom yang mengikat, atau energi dipancarkan kembali. Jika energi foton diserap, sebagian energi membebaskan elektron dari atom, dan sisanya dikontribusi untuk energi kinetik elektron sebagai partikel bebas.
Tidak ada elektron yang dilepaskan oleh radiasi di bawah frekuensi ambang, karena elektron tidak mendapatkan energi yang cukup untuk mengatasi ikatan atom. Elektron yang dipancarkan biasanya disebut fotoelektron dalam banyak buku pelajaran.
Efek fotolistrik banyak membantu penduaan gelombang-partikel, dimana sistem fisika (seperti foton dalam kasus ini) dapat menunjukkan kedua sifat dan kelakuan seperti-gelombang dan seperti-partikel, sebuah konsep yang banyak digunakan oleh pencipta mekanika kuantum. Efek fotolistrik dijelaskan secara matematis oleh Albert Einstein yang memperluas kuanta yang dikembangkan oleh Max Planck.
 
Hukum emisi fotolistrik:
1.      Untuk logam dan radiasi tertentu, jumlah fotoelektro yang dikeluarkan berbanding lurus dengan intensitas cahaya yg digunakan.
2.      Untuk logam tertentu, terdapat frekuensi minimum radiasi. di bawah frekuensi ini fotoelektron tidak bisa dipancarkan.
3.      Di atas frekuensi tersebut, energi kinetik yang dipancarkan fotoelektron tidak bergantung pada intensitas cahaya, namun bergantung pada frekuensi cahaya.
4.      Perbedaan waktu dari radiasi dan pemancaran fotoelektron sangat kecil, kurang dari 10-9 detik.
Maksimum energi kinetik K maks dari sebuah elektron yang dikeluarkan dituliskan sebagai berikut

Di mana h adalah konstanta Planck dan f adalah frekuensi foton. Lambang φ adalah fungsi kerja (kadang dilambangkan W), yang memberikan energi minimum yang diperlukan untuk memindahkan elektron terdelokalisasi dari permukaan logam. Fungsi kerja memenuhi


Dimana f 0 adalah frekuensi ambang batas untuk logam. Maksimum energi kinetik dari sebuah elektron dikeluarkan kemudian
 
Energi kinetik adalah positif, jadi kita harus memiliki f> f 0 untuk efek fotolistrik terjadi.
 
b. Potensial Penghenti
Hubungan antara arus dan tegangan diterapkan menggambarkan sifat efek fotolistrik. Untuk diskusi, sumber cahaya menerangi P piring, dan lain elektrode pelat Q mengumpulkan setiap elektron yang dipancarkan. Kami bervariasi potensial antara P dan Q dan mengukur arus yang mengalir dalam sirkuit eksternal antara dua lempeng.
Jika frekuensi dan intensitas radiasi insiden adalah tetap, arus fotolistrik meningkat secara bertahap dengan peningkatan potensi positif sampai semua foto elektron yang dipancarkan dikumpulkan. Arus fotolistrik mencapai nilai saturasi dan tidak meningkatkan lebih lanjut untuk peningkatan potensi positif. Arus saturasi tergantung pada intensitas pencahayaan, tapi tidak panjang gelombang.
Jika kita menerapkan potensi negatif ke piring Q sehubungan dengan plat P dan secara bertahap meningkatkan itu, berkurang saat fotolistrik sampai nol, pada potensial negatif tertentu di piring Q. potensi negatif minimum yang diberikan ke piring Q di mana arus fotolistrik menjadi nol disebut potensial menghentikan atau memotong potensial.
Untuk frekuensi yang diberikan radiasi insiden, potensi berhenti adalah independen dari intensitasnya.
Untuk frekuensi yang diberikan radiasi insiden, potensi Vo berhenti berhubungan dengan energi kinetik maksimum fotoelektron yang hanya berhenti dari T. piring mencapai Jika m adalah massa dan v adalah kecepatan maks maksimum fotoelektron dipancarkan, maka
Jika e adalah muatan pada elektron dan V0 adalah potensial penahan, maka pekerjaan yang dilakukan oleh potensi perlambatan dalam menghentikan elektron = e V0, yang memberikan
Hubungan di atas menunjukkan bahwa kecepatan maksimum fotoelektron dipancarkan tidak tergantung pada intensitas cahaya insiden. Oleh karena itu

,
Tegangan menghentikan bervariasi secara linear dengan frekuensi cahaya, tapi tergantung pada jenis bahan. Untuk materi tertentu, ada frekuensi ambang yang harus dilampaui, independen dari intensitas cahaya, untuk mengamati emisi elektron.
Dalam rezim sinar-X, efek fotolistrik dalam bahan kristal sering didekomposisi menjadi tiga langkah:
 
1.      Inner efek fotolistrik. Lubang tertinggal dapat menimbulkan efek auger , yang terlihat bahkan ketika elektron tidak meninggalkan materi. Dalam padatan molekul fonon sangat antusias dalam langkah ini dan dapat terlihat sebagai garis dalam energi elektron akhir. Para photoeffect batin harus diperbolehkan. Para aturan transisi untuk atom menerjemahkan melalui model ketat mengikat ke kristal. Mereka adalah geometri untuk osilasi plasma dalam bahwa mereka harus transversal.
2.      Balistik transportasi setengah dari elektron ke permukaan. Beberapa elektron tersebar.
3.      Elektron melarikan diri dari bahan di permukaan.
 
Dalam model tiga langkah, elektron dapat mengambil beberapa jalur melalui tiga langkah. Semua jalan dapat mengganggu dalam arti formulasi jalan terpisahkan. Untuk negara permukaan dan molekul model tiga langkah apakah masih masuk akal bahkan beberapa sebagai yang paling atom memiliki elektron yang dapat menyebarkan beberapa elektron yang meninggalkan.
 
2.2. Hamburan Compton
Seberkas radiasi yang dikenakan pada lempeng (plat tipis) logam akan mengalami hamburan. Intensitas radiasi terhambur tergantung pada sudut hamburannya. Gambar berikut menunjukkan susunan peralatan dan hasil pengamatan hamburan radiasi. Gejala tersebut tidak dapat dijelaskan dengan memandang radiasi sebagai gelombang klasik.


   
 
Hamburan Compton
Pada tahun 1923, Compton mempelajari hamburan radiasi tersebut di atas, dan menerangkan sebagai berikut. Radiasi yang dikenakan pada lempeng logam berinteraksi dengan elektron bebas dalam logam (tidak selalu menimbulkan efek fotolistrik walaupun tenaganya cukup). Interaksi antara radiasi dengan elektron bebas dalam logam berperilaku seperti tumbukan elastis antara dua partikel. Mekanisme hamburan radiasi (kemudian disebut hamburan Compton atau efek Compton) tersebut di atas dapat dijelaskan dengan memberlakukan hukum-hukum kekekalan tenaga dan momentum linear secara relativistik.
Percobaan Compton merupakan salah satu dari tiga proses yang melemahkan energi suatu sinarionisasi. Bila suatu sinar jatuh pada permukaan suatu materi sebagian daripada energinya akan diberikankepada materi tersebut, sedangkan sinar itu sendiri akan di sebarkan, sehingga energy radiasi yangdipancarkan lebih kecil dari energi radiasi yang datang ( panjang gelombang lebih panjang daripadasebelumnya ).
Hamburan Compton adalah suatu efek yang merupakan bagian interaksi sebuah penyinaran terhadapsuatu materi. Efek Compton adalah salah satu dari tiga proses yang melemahkan energi suatu sinar ionisasi. Bila suatu sinar jatuh pada permukaan suatu materi sebagian daripada energinya akan diberikan kepadamateri tersebut, sedangkan sinar itu sendiri akan di sebarkan. Proses hamburan Compton dianalisis sebagai suatu interaksi (“tumbukan” dalam pengertian partikel secara klasik) antara sebuah foton dan sebuah
elektron, yang kita anggap diam. Hamburan Compton terjadi apabila foton dengan energi hf berinteraksidengan elektron bebas atau elektron yang tidak terikat dengan kuat oleh inti, yaitu elektron terluar dari atom.Elektron itu dilepaskan dari ikatan inti dan bergerak dengan energi kinetik tertentu disertai foton lain denganenergi lebih rendah dibandingkan foton datang. Foton lain ini dinamakan foton hamburan. Dalam hamburanCompton ini, energi foton yang datang yang diserap atom diubah menjadi energi kinetik elektron dan fotonhamburan
2.3. Konsep Foton
Foton adalah partikel elementer dalam fenomena elektromagnetik. Biasanya foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel ("dualisme gelombang-partikel").
Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain.
Sebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah:

 

Di mana adalah konstanta Planck, adalah laju cahaya,  dan adalah panjang gelombangnya.
 
Selain energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum tertentu.
Sebagai contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan tereksitasi.
Deskripsi foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan sejenis.
Konsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi, dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan termal. Fisikawan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton.
Konsep foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge ini.
 
Konsep foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi kuantum.
BAB III
PENUTUP
3.1. Kesimpulan
Peristiwa pelepasan elektron dari logam oleh radiasi disebut efek fotolistrik, diamati pertama kali oleh Heinrich Hertz (1887). Elektron yang terlepas dari logam disebut foto-elektron.
Hamburan Compton adalah suatu efek yang merupakan bagian interaksi sebuah penyinaran terhadapsuatu materi. Efek Compton adalah salah satu dari tiga proses yang melemahkan energi suatu sinar ionisasi. Bila suatu sinar jatuh pada permukaan suatu materi sebagian daripada energinya akan diberikan kepadamateri tersebut, sedangkan sinar itu sendiri akan di sebarkan.
Foton adalah partikel elementer dalam fenomena elektromagnetik. Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain.
3.2. Saran
Ketiga materi tersebut harus lebih dipahami sehingga pemahamannya dapat diperoleh dengan optimal.

DAFTAR PUSTAKA
Beiser, Arthur. 1987. Concepts of Modern Physics. Jakarta: Erlangga.
http://fisikaasikdotcom.wordpress.com/2012/03/16/efek-fotolistrik/
Di akses tanggal 10 Maret 2013
http://id.scribd.com/doc/124621696/hamburan-kompton
Di akses tanggal 10 Maret 2013

Comments

Popular posts from this blog

Polarimeter

RANCANGAN PROSES PEMBELAJARAN

PERPINDAHAN KALO